
4 Testing
Testing is an essential part of any software development project, and it is particularly crucial for
a web application like ours that aims to help users find the optimal living location by creating
heatmaps based on their daily trips. And to ensure that our application functions correctly and
meets user requirements, we need a comprehensive testing strategy that covers all aspects of
our system's design. One of the unique challenges to testing our system is the reliance on
third-party APIs, particularly Google APIs, to generate the heatmaps. Since these APIs are
external to our system, they can be subject to unexpected changes, which can impact our
application's functionality. So, we need to ensure that our testing strategy includes detailed
testing of the integration with these APIs. Another challenge in testing our system is the diverse
range of user inputs that our application needs to handle, including daily trip frequency and
timing. This makes it essential to perform extensive testing of the input validation and
processing functions to ensure that the application can handle a wide variety of inputs and
produce accurate heatmaps. We are going to address these challenges and ensure the overall
quality of our application by implementing a testing strategy that includes a range of testing
techniques, including unit testing, integration testing, interface testing, and user acceptance
testing.

4.1 Unit Testing

1. User Account Creation and Management: We will create test cases for user account
creation, login, logout, and password reset functionalities. Which can be done using
tools like JUnit.

2. Input Validation Functions: We will test the functions responsible for validating user
inputs, including input data types, format, and range. Which can be done using tools like
JUnit or NUnit.

3. Heatmap Generation: We will test it by creating test cases for generating heatmaps
based on user inputs and verifying that the heatmaps are generated correctly. Which can
be done using testing frameworks like JUnit, NUnit, or TestNG. Outputed heat maps can
also be verified by comparing the weights to hand generated versions. Hand generated
versions will be calculated using google maps to find the commute time from the start to
each location and taking the average. This should match the heat map weight.



4. API Integration: we will test the functions responsible for integrating with Google APIs to
generate heatmaps based on user inputs. Which can be done using testing frameworks
that support API testing, like Postman.

5. User Authentication and Authorization: we will test the functions responsible for user
authentication and authorization. Which can be done using frameworks like Spring
Security.

When testing each unit, we will consider testing both the expected behavior and the boundary
conditions, which will include testing both valid and invalid inputs and edge cases that test the
limits of our application. And to perform these tests, we are going to use various testing
frameworks and tools, such as JUnit, NUnit, or TestNG. These frameworks can be integrated
with our build and deployment process to automate testing.

4.2 Interface Testing

1. User Interface: This interface allows users to create accounts, provide input for daily trips
frequency and timing, view the generated heatmaps, and manage their accounts. We
need to test the user interface of our web application to ensure that it works as expected.
We will use tools like Selenium, Cypress, or TestCafe. We wil also deploy a beta version
of this application for review by realtors. The review process has been approved by our
client.

2. Google API Interface: This interface enables our web application to integrate with
Google APIs to generate heatmaps based on user inputs. We need to test the
integration between our web application and Google APIs. We will use tools like
Postman or SoapUI to create API tests and ensure that the API calls return the expected
results.

3. Finally, we need to test the interaction between the user interface and Google API
interfaces to ensure that our web application works as expected. We can do this by
monitoring data results from the integrated API and comparing them to the expected
results.

4.3 Integration Testing
What are the critical integration paths in your design? Justification for criticality may come from
your requirements. How will they be tested? Tools?



The first critical path in our design is the input and output streams to and from the used API’s.
This is because we do not have full control over how the data will be manipulated and what the
results will be. We will test this by first using a bare bones framework to run several API
requests and monitor output. Requests will be generated based on normal and edge case
inputs (i.e. a single location, or a very large amount of locations spread between a great
distance). We will use tools such as JUnit and NUnit to test for exceptions by comparing the
structure of the output to the expected structure. After ensuring the edge case and normal tests
match our expected structure for data returns, we will them generate heat maps from these and
compare to hand created ones described above.

The second critical path is the user interface and input stream on the client end.

4.4 System Testing
Describe system level testing strategy. What set of unit tests, interface tests, and integration
tests suffice for system level testing? This should be closely tied to the requirements. Tools?

System testing will be done using the BrowserStack suite of tools. These tools will alow us to
view the website across 300 different platforms including mobile based. BrowserStack will also
allow us to test the responsiveness of the website to ensure we maintain usability across screen
and device types. Overall functionality will be tested by generating heatmaps on each of the 300
browsers and comparing them either manually or through image recognition to determine if any
meaningful differences arise. The BrowserStack application ill allow us to test our design on
each platform concurrently by simulating each of the requests from a different browser type.

A beta version of this application will be reviewed by currently practicing realtors to ensure
functionality meets the demands of our users.

4.5 Regression Testing
How are you ensuring that any new additions do not break the old functionality? What
implemented critical features do you need to ensure they do not break? Is it driven by
requirements? Tools?

We have created our site as modularly as possible and used general CSS styles for buttons to
ensure future additions will adhere to our current design. The critical features implemented in
this program are the integration of the APIs. The modularity allows us to make modifications to
the functions without disrupting the current progress. Front-end visual or structural changes will
need to be tested as stated above on 4.4 for browser support and responsiveness. We will
reuse the BrowserStack suite of tools to ensure any additions to the visual or structural design
in the front end does not hamper the end result.

Tests created using the BrowserStack testing tools will be automated and used to determine
whether new functionality breaks old functionality.



4.6 Acceptance Testing
How will you demonstrate that the design requirements, both functional and non-functional are
being met? How would you involve your client in the acceptance testing?

Our client has been involved within our acceptance testing through periodic meetings. We have
met once a week to update progress made. While we display these updates we are receiving
feedback on design choices. This will help make sure that non-functional requirements are
met. As development progresses these meetings will continue. As functional features are
added, we will test then receive feedback from the client.

Additionally, we have received information that there is interest in our product by members of
the housing and real estate industry. We are planning to hold a showcase once the product is
further developed to receive feedback.

4.7 Security Testing (if applicable)
Our project will be dealing with user information including their frequented locations as well as
listed housing information, because of this we need to assure that our user’s sessions and data
are properly encrypted, and that our site is safe from injections and other common
vulnerabilities. We will test for a variety of potential web-based security issues using various
penetration testing tools including Burp Suite, SQLMap, Nikto, and more. We plan to use the
OWASP Top Ten list of web-application vulnerabilities for a baseline of vulnerabilities to test for
using these tools. This list highlights broken access control, cryptographic failures, site
injections, and request forgeries as some of the most common vulnerabilities on the web.

4.8 Results
What are the results of your testing? How do they ensure compliance with the requirements?
Include figures and tables to explain your testing process better. A summary narrative
concluding that your design is as intended is useful.


